Tel: +8619865478065 E-mail: info@redluxelight.com

clinical studies

Clinical Studies

Explore Our Phototherapy Clinical Research Database

Reversal of stem cell-derived hypertrophic adipocytes mediated by photobiomodulation (1064 nm)

Adipose-derived stem cells were induced to hypertrophy with the addition of palmitic acid (…) PBM-treated hypertrophic cells (1064 nm and 17.6 J/cm2 every day for 7 days following addition of PA) decreased the lipid levels in hypertrophic adipocytes, restored the GLUT4 protein expression and enhanced glucose transport. Taken together, PBM is shown capable of restoring the cellular morphology and function of hypertrophic cells. This could have important clinical implication for the development of laser-based potential therapeutic treatment of complications due to metabolic syndrome

Photobiomodulation reduces abdominal adipose tissue inflammatory infiltrate of diet-induced obese and hyperglycemic mice.

Non-irradiated control animals display inflammatory areas almost five times greater than the treated group (p < 0.001). This result on inflammatory infiltrate may have caused impacts on the significant lower blood glucose level from irradiated animals (p = 0.04), twenty-four hours after the last irradiation session.

Photobiomodulation with polychromatic light (600-1200 nm) improves fat graft survival by increasing adipocyte viability, neovascularization, and reducing inflammation in a rat model

Intergroup comparison revealed that fat graft retention regarding weight and volume, was significantly superior in Group IV (p = 0.049 and p = 0.043, respectively), which polychromatic light was applied both before and after transfer of the graft. Hematoxylin-eosin and Masson’s trichrome stained sections showed absence of necrosis, fibrosis, inflammation, cyst formation, and increased vascularization of both inner and outer zones of the grafts in Group IV. Application of PBM to the recipient site before and after fat transfer improved outcomes in rats at 56 day after fat grafting by means of volume retention, increased neovascularization and adipocyte viability and reduced necrosis, fibrosis and inflammation.

Photobiomodulation therapy decreases free fatty acid generation and release in adipocytes to ameliorate insulin resistance in type 2 diabetes.

The current results indicated that PBMT inhibited FFA generation and release in insulin-resistant adipocytes and reduced plasma FFA levels in diabetic db/db mice and HFD-fed mice. Therefore, PBMT might ameliorate whole-body insulin resistance in diabetic mice. GTT analysis indicated that glucose tolerance was markedly enhanced in db/db mice after PBMT (Fig. 5D, E). Meanwhile, insulin sensitivity was also elevated in laser-treated db/db mice (Fig. 5F, G). In HFD-fed mice, glucose tolerance and insulin sensitivity were also improved after PBMT (Fig. 5H–K). These results indicate that PBMT could improve whole-body insulin resistance in diabetic mice PBMT promoted mitochondrial reactive oxygen species (ROS) generation, which inhibited phosphatase and tensin homologue (PTEN) and promoted protein kinase B (AKT) activation. Photoactivation of AKT inhibited the transcriptional activity of Forkhead box transcription factor O1 (FoxO1), reducing expression of lipolytic enzymes and FFA generation and release. Eliminating ROS elimination or inhibiting AKT blocked the effects of the laser therapy in vivo and in vitro. Taken together, PBMT suppresses FFA generation and release in insulin-resistant adipocytes, contributing to improvement of insulin resistance in mouse models of type 2 diabetes.

904 nm Low-Level Laser Irradiation Decreases Expression of Catabolism-Related Genes in White Adipose Tissue of Wistar Rats: Possible Roles of Laser on Metabolism.

We demonstrated that the low-level laser irradiation was able to increase the feed intake of the animals and the relative mass of the adipose tissue in the CTL (L) group compared with CTL. Laser treatment also increases serum triglycerides [CTL = 46.99 ± 5.87; CTL (L) = 57.46 ± 14.38; CAF = 43.98 ± 5.17; and CAF (L) = 56.9 ± 6.12; p = 0.007] and total cholesterol (CTL = 70.62 ± 6.80; CTL (L) = 79.41 ± 13.07; CAF = 71.01 ± 5.52; and CAF (L) = 79.23 ± 6.881; p = 0.003). Laser PBM decreased gene expression of the studied genes in the adipose tissue, indicating that PBM is able to block the catabolic responses of this tissue. Interestingly, the CAF (L) and CAF animals presented the same CLT (L) phenotype, however, without increasing the feed intake and the relative weight of the adipose tissue. The description of these phenomena opens a new perspective for the study of the action of low-level laser in adipose tissue. Comment: It seems the authors may misunderstand dose parameters since they assume fluence of different sites can be summed (eg. they claim irradiation of 3 points at 6 J/cm2 would equal 18 J/cm2).

Infrared photobiomodulation (PBM) therapy improves glucose metabolism and intracellular insulin pathway in adipose tissue of high-fat fed mice.

PBM therapy improved glucose tolerance and phosphorylation of Akt (Ser473) and reversed the HFD-induced reduction of GLUT4 content and phosphorylation of AS160 (Ser588). Also, PBM therapy reversed the increased area of epididymal and mesenteric adipocytes. The total serum cholesterol was not affected by diet (diet main effect p = 0.39), but there was a PBM main effect (p = 0.047). Post hoc revealed that PBM reduced total serum cholesterol (p = 0.043), regardless of diet treatment (Fig. 3b). In the present study, PBM therapy did not alter HFD-induced increase in fasting hyperglycemia, hyperinsulinemia, and insulin resistance, as assessed by HOMA-IR. On the other hand, PBM therapy improved glucose intolerance in HFD-fed mice. Also, PBM therapy reversed the increased area of epididymal and mesenteric adipocytes. The results showed that chronic PBM therapy improved parameters related to obesity and insulin resistance in HFD-induced obesity in mice.

Laser Photobiomodulation 904 nm Promotes Inhibition of Hormone-Sensitive Lipase Activity in 3T3-L1 Adipocytes Differentiated Cells.

The response of laser photobiomodulation was able to trigger an inhibition of HSL activity

Evaluation of lipolysis and toxicological parameters of low-level laser therapy at different wavelengths and doses in the abdominal subcutaneous tissue

Except for the IR3.3 group, all treated groups reduced the body weight (p < 0.001). The R5 group reduced the abdominal subcutaneous tissue weight and thickness (p < 0.05), even though all treated groups reduced the number of adipocytes and its size (p < 0.001). No histological changes in the liver. There were no alterations in the triglycerides and LDL levels. The IR5 group increased the total cholesterol levels and decreased the HDL, ALT (both p < 0.05), and AST levels (p < 0.001). The group IR3.3 showed higher levels of ALP (p < 0.01). The R3.3 group increased the TBARS and CAT activity (p < 0.05). No mutagenic effects were found. The red laser treatment at 5 J/cm2 led to lipolysis and did not alter the liver’s parameters.

Effect of one session of aerobic exercise associated with abdominal laser therapy in lipolytic activity, lipid profile, and inflammatory markers

It is concluded that one session of aerobic exercise associated with LLLT and one session of aerobic exercise appears to be able to increase the lipolytic activity. However, it appears that LLLT does not provide increased value to the aerobic physical exercise by itself in lipolysis process.

Leave a message

    WholesalerRetailerPersonal